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Abstract
We present an example of quantum computational tasks whose performance
is enhanced if we distribute quantum information using quantum cloning.
Furthermore, we give achievable efficiencies for probabilistically cloning the
quantum states used in implemented tasks for which cloning provides some
enhancement in performance.

PACS number: 03.67.Lx

1. Introduction

Cloning is a type of quantum information processing tool. In 1982 Wootters and Zurek [1] and
Dieks [2] independently discovered the no-cloning theorem, one of the first results stressing
the peculiarities of quantum information. They showed that unlike classical information, it is
impossible to make perfect copies of an unknown quantum state, i.e. qubits cannot be copied.
Since then quantum cloning has been studied intensively, and much effort has been put into
developing optimal cloning processes [3–14]. There are two main approaches to quantum
cloning. The first one consists in using ancillary quantum systems and a global unitary
operation to obtain multiple imperfect clones of a given, unknown quantum state. These
universal quantum cloning machines (UQCMs) were first invented by Bužek and Hillery [3]
and developed by other authors [4–12]. The second kind of cloning procedure first designed
by Duan and Guo [13, 14] is nondeterministic, consisting in adding an ancilla, performing
unitary operations and measurements, with a postselection of the measurement results. The
resulting clones are perfect, but the procedure only succeeds with a certain probability p < 1,
which depends on the particular set of states that we are trying to clone. Recently, Galvão
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and Hardy discuss how quantum information distribution implemented with different types
of quantum cloning procedures can improve the performance of some quantum computation
tasks [15]. Unfortunately, in the second example they obtained the achievable efficiencies for
probabilistically cloning states by a numerical search. Evidently, the numerical result is not
an exact solution and this is what originally motivated the present work.

Our purpose in this paper is twofold. First we present an example of quantum
computation tasks whose performance is enhanced if we distribute quantum information using
quantum cloning. The second purpose of the paper is to provide achievable efficiencies for
probabilistically cloning the states [15] used in implemented tasks for which cloning provides
some enhancement in performance.

2. An example with probabilistic cloning

In this section, we give an example of quantum computation tasks that can be better performed
if we make use of quantum cloning. The task relies on state-dependent probabilistic quantum
cloning discussed by Duan and Guo [13, 14]. Now we present our example by generalizing
the second example of [15] in which they discussed the functions that take two bits to one bit,
to the case of three bits to one bit.

The quantum computational task is as follows. Suppose that we are given three quantum
black-boxes. What each black-box does is to accept four two-level quantum systems as an
input and apply a unitary operator to it, producing the evolved state as the output. We take the
black-boxes to consist of arbitrary quantum circuits that query a given function only once. The
query of function fi is the unitary that performs |x〉|y〉 → |x〉|y ⊕fi(x)〉, where the symbol ⊕
represents the bitwise XOR operation. Our task will involve determining two functionals, one
depending only on f0 and f1, and the other on f0 and f2. We will prove that cloning offers an
advantage which cannot be matched by any approach that does not resort to quantum cloning.

In order to precisely state our task, we start by considering all functions hi which take three
bits to one bit. We may represent each such function with eight bits a1, a2, a3, a4, a5, a6, a7

and a8, writing ha1a2a3a4a5a6a7a8 to stand for the function h such that h(000) = a1, h(001) =
a2, h(010) = a3, h(011) = a4, h(100) = a5, h(101) = a6, h(110) = a7, h(111) = a8. Now
we define some sets of functions that will be useful in stating our task:

Sf0 = {h01000000, h00110011, h11000011}
S1 = {h01000000, h10110000, h10001100, h00100110, h00010101, h10000011, h00101001, h00011010}
S2 = {h00000000, h00001111, h01010101, h00110011, h10011001, h11000011, h01101001, h10100101}
Sf12 = S1 ∪ S2

S00000000 = {h00000000, h11111111} S00001111 = {h00001111, h11110000}
S01010101 = {h01010101, h10101010} S00110011 = {h00110011, h11001100}
S10011001 = {h10011001, h01100110} S11000011 = {h11000011, h00111100}
S01101001 = {h01101001, h10010110} S10100101 = {h10100101, h01011010}
Sf = S00000000 ∪S00001111 ∪S01010101 ∪S00110011 ∪S10011001 ∪S11000011 ∪S01101001 ∪S10100101.

Now we first randomly choose a function f0 ∈ Sf0 , then two other functions f1 and f2

are picked from the set Sf12 , also at random but satisfying

f0 ⊕ f1 f0 ⊕ f2 ∈ Sf . (1)

Here the symbol ⊕ is addition modulo 2. The task will be to find in which of the eight
sets S00000000, S00001111, S01010101, S00110011, S10011001, S11000011, S01101001 and S10100101 lie each
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Figure 1. If function fi is guaranteed to be either in set S1 or in S2, then this quantum circuit can be
used to distinguish between the eight possibilities in each set. We can determine fi by measuring
the final state |ϕi〉 = 1

2
√

2

∑111
x=000(−1)fi (x)|x〉 in one of two orthogonal bases, depending on which

set contains fi . Here H operations are Hadamard gates.

of the functions f0 ⊕ f1 and f0 ⊕ f2, applying quantum circuits that query f0, f1 and f2 at
most once each. Our score will be given by the average probability of successfully guessing
both correctly.

2.1. Score without cloning

Now we will give the attainable score if we do not resort to cloning. Just as [15] the best
no-cloning strategy goes as follows. Firstly, from the constraints given by equation (1) we
note that both f1 and f2 must be in S1 if f0 = h01000000, and f1 and f2 must belong to S2 if f0

is either h00110011 or h11000011. Since f0 were drawn from a uniformly random distribution, the
probability of both f1 and f2 in S2 is 2/3. Assume that it is the case, then we can discriminate
between the two possibilities for f0 with a single, classical function call. Furthermore, by
using the quantum circuit in figure 1 twice (once each with f1 and f2) we can distinguish the
eight possibilities for functions f1 and f2.

This happens because depending on which function in S2 was queried, this quantum
circuit results in one of the eight orthogonal states

|ϕi〉 = 1

2
√

2

111∑
x=000

(−1)fi (x)|x〉. (2)

This allows us to determine functions f0, f1 and f2 correctly with probability p = 2/3, in
which case we can determine which sets contain f0 ⊕f1 and f0 ⊕f2 and accomplish our task.
Even in the case where the initial assumption about f0 was wrong, we may still have guessed
the right sets by chance; the chances of getting both right this way are 1/64. Thus, the best
no-cloning average score is

p1 = 2
3 + 1

3 × 1
64 = 0.671 875. (3)

2.2. Score with cloning

Next we will prove that we can do much better than that with quantum cloning. The idea is
similar to [15], that is, to devise a quantum circuit that queries function f0 only once, makes
two clones of the resulting state, and then queries functions f1 and f2, one in each branch of
the computation. Since we have some information about the state produced by one query of
f0, the probabilistic cloning machines investigated by Duan and Guo [13] will suit this task
better.

The quantum circuit that we use to solve this problem is depicted in figure 2. Immediately
after querying function f0, we have one of three possible linearly independent states (each
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Figure 2. The cloning procedure in this circuit is probabilistic. After the cloning process
we can measure a ‘flag’ subsystem and know whether the cloning was successful or not. If
the cloning is successful, we let the clones go through the rest of the circuit, yielding output
states |ϕi〉 = 1

2
√

2

∑111
x=000(−1)f0(x)+fi (x)|x〉 (i = 1, 2). These states can be measured in the basis

defined by equations (9)–(16) to unambiguously decide which of the eight sets S00000000, S00001111,

S01010101, S00110011, S10011001, S11000011, S01101001, S10100101 contains f0 ⊕ fi .

corresponding to one of the possible f0):

|�1〉 ≡ |h01000000〉 ≡ 1
2
√

2
[|000〉 − |001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉 + |111〉]

(4)

|�2〉 ≡ |h00110011〉 ≡ 1
2
√

2
[|000〉 + |001〉 − |010〉 − |011〉 + |100〉 + |101〉 − |110〉 − |111〉]

(5)

|�3〉 ≡ |h11000011〉 ≡ 1
2
√

2
[−|000〉 − |001〉 + |010〉 + |011〉 + |100〉 + |101〉 − |110〉 − |111〉].

(6)

The probabilistic cloning machines with different cloning efficiencies (defined as the
probability of cloning successfully) for each of states (4)–(6) will be constructed. From
theorem 2 in [13] we obtain the following exact achievable efficiencies,

γ1 ≡ γ (|h01000000〉) = 7

127
(7)

γ2 ≡ γ (|h00110011〉) = γ3 ≡ γ (|h11000011) = 112

127
(8)

which will be shown in the next section.
After the cloning process a measurement on a ‘flag’ subsystem is performed and the result

will tell us whether the cloning was successful or not. For this particular cloning process, the
probability of success is, on average, Psuccess = (γ1 + γ2 + γ3)/3 = 77

127 . If it was successful,
then each of the cloning branches goes through the second part of the circuit in figure 2, to
yield one of the eight orthogonal states,

|h00000000〉 ≡ 1
2
√

2
[|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉 + |111〉] (9)

|h00001111〉 ≡ 1
2
√

2
[|000〉 + |001〉 + |010〉 + |011〉 − |100〉 − |101〉 − |110〉 − |111〉] (10)

|h01010101〉 ≡ 1
2
√

2
[|000〉 − |001〉 + |010〉 − |011〉 + |100〉 − |101〉 + |110〉 − |111〉] (11)

|h00110011〉 ≡ 1
2
√

2
[|000〉 + |001〉 − |010〉 − |011〉 + |100〉 + |101〉 − |110〉 − |111〉] (12)
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|h10011001〉 ≡ 1
2
√

2
[−|000〉 + |001〉 + |010〉 − |011〉 − |100〉 + |101〉 + |110〉 − |111〉] (13)

|h11000011〉 ≡ 1
2
√

2
[−|000〉 − |001〉 + |010〉 + |011〉 + |100〉 + |101〉 − |110〉 − |111〉] (14)

|h01101001〉 ≡ 1
2
√

2
[|000〉 − |001〉 − |010〉 + |011〉 − |100〉 + |101〉 + |110〉 − |111〉] (15)

|h10100101〉 ≡ 1
2
√

2
[−|000〉 + |001〉 − |010〉 + |011〉 + |100〉 − |101〉 + |110〉 − |111〉] (16)

which can be discriminated unambiguously. Therefore, if the cloning process is successful,
we manage to accomplish our task.

However, the cloning process may fail with probability (1−Psuccess). If this happens, it is
more likely to be h01000000 than the other two, because of the relatively low cloning efficiency
for the state in equation (4), in relation to the states in equations (5) and (6) (see equations (7)
and (8)). If we then guess that f0 = h01000000, we will be right with probability

p01000000 = (1 − γ1)

(1 − γ1) + (1 − γ2) + (1 − γ3)
= 4

5
. (17)

What is more, we are still free to design quantum circuits to obtain information about f1 and
f2, since at this stage we still have not queried them. Given our guess that f0 = h01000000,
only the eight functions in S1 can be candidates for f1 and f2, because of the constraints given
by equation (1). These eight possibilities can be discriminated unambiguously by running a
circuit like that of figure 1 twice, once with f1 and once with f2. The circuit produces one of
eight orthogonal states, each corresponding to one of the eight possibilities for fi . Therefore if
our guess that f0 = h01000000 was correct, we are able to find the correct f1 and f2 and therefore
accomplish our task. In the case that f0 �= h01000000 after all, we may still have guessed the
right sets by chance; a simple analysis shows that this will happen with probability 1/64.

The above considerations lead to an overall probability of success given by

p2 = Psuccess + (1 − Psuccess)

[
p01000000 + (1 − p01000000)

1

64

]

= 22 + 21(γ2 + γ3)

64

= 3749

4064
	 0.922 49

> p1 = 0.671 875 (18)

thus showing that this cloning approach is more efficient than the previous one, which does
not use cloning.

2.3. Exact achievable efficiencies

Here we present the analytic solution of achievable efficiencies for cloning the state
equations (4)–(6). As stated above we use γ1 ≡ γ (|h01000000〉), γ2 ≡ γ (|h00110011〉), γ3 ≡
γ (|h11000011〉) to express the achievable efficiencies, and let |P (1)〉, |P (2)〉, |P (3)〉 be normalized
states of the flag P. Pij denotes the inner product 〈P (i)|P (j)〉 between |Pi〉 and |Pj 〉, i, j =
1, 2, 3. Clearly, |Pij | � 1. Suppose the 3 × 3 matrices X(1) = [〈�i |�j 〉], X(2)

P = [〈�i |�j 〉2Pij ]
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and the diagonal efficiency matrix � = diag(γ1, γ2, γ3), then

X(1) −
√

�X
(2)
P

√
�+ =


 1 − 1

4
1
4

− 1
4 1 0

1
4 0 1


 −




γ1

√
γ1γ2

16 P12

√
γ1γ3

16 P13√
γ1γ2

16 P ∗
12 γ2 0

√
γ1γ3

16 P ∗
13 0 γ3




=




1 − γ1 − 1
4 −

√
γ1γ2

16 P12
1
4 −

√
γ1γ3

16 P13

− 1
4 −

√
γ1γ2

16 P ∗
12 1 − γ2 0

1
4 −

√
γ1γ3

16 P ∗
13 0 1 − γ3


 .

Theorem 2 of [13] provides us with inequalities

1 − γ1 � 0 (19)

(1 − γ1)(1 − γ2) − ∣∣ 1
4 + 1

16

√
γ1γ2P12

∣∣2 � 0 (20)

(1 − γ1)(1 − γ2)(1 − γ3) − (1 − γ3)
∣∣ 1

4 + 1
16

√
γ1γ2P12

∣∣2 − (1 − γ2)
∣∣ 1

4 − 1
16

√
γ1γ3P13

∣∣2 � 0

(21)

which allow us to derive achievable efficiencies for the probabilistic cloning process.
According to the rule stated in the above section (see equation (18)) the overall probability
(score) of success with the help of probabilistic cloning is given by

p2 = psuccess + (1 − psuccess)

[
p01000000 + (1 − p01000000)

1

64

]

= γ1 + γ2 + γ3

3
+

(
1 − γ1 + γ2 + γ3

3

) [
1 − γ1

3 − γ1 − γ2 − γ3
+

(
1 − 1 − γ1

3 − γ1 − γ2 − γ3

)
1

64

]
= [22 + 21(γ2 + γ3)]/64. (22)

From above equation we know that we should find the maximum of γ2 + γ3 satisfying
equations (19)–(21).

In the following, we show that the maximum of γ2 + γ3 must be greater than or equal to
224
127 . We consider the case γ2 = γ3. In this case, there is

(1 − γ1)(1 − γ2) − ∣∣ 1
4 + 1

16

√
γ1γ2P12

∣∣2 − ∣∣ 1
4 − 1

16

√
γ1γ2P13

∣∣2 � 0 (23)

which implies that
7
8 − qx + sx2 � y � 2x � 0 (24)

where P12 = a + bi, P13 = c + di, q = 1
32 (a − c), s = 1 − 1

256 (a2 + b2 + c2 + d2), y = γ1 + γ2,
and x = √

γ1γ2. It is not difficult to prove that

127

128
� s � 1 − 1

16
� q � 1

16
. (25)

Since 7
8 − q + s � 2, and 0 � x � 1, y = 7

8 − qx + sx2 and y = 2x have one intersection
point

(x0, y0) =

2 + q −

√
(2 + q)2 − 7

2 s

2s
,

2 + q −
√

(2 + q)2 − 7
2 s

s


 .

The region in the x–y plane and the region in the q–s plane governed by equation (24) are the
shaded areas in figure 3 and in figure 4 respectively.
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�

�

1

1

2

x

y
y = 2x

0

7
8

y = 7
8 − qx + sx2

(x0, y0)

Figure 3. The (x, y) region. Note 7
8 − q + s � 2.

�

�

127
128

1

1
16− 1

16

q

s

0

s = 1 − 2q2

Figure 4. The (q, s) region.

From y = γ1 + γ2 and x = √
γ1γ2 we have

γ1 = 1
2

(
y −

√
y2 − 4x2

)
γ2 = 1

2

(
y +

√
y2 − 4x2

)
. (26)

This implies that γ2 is a decreasing function of x when y is definite, so the maximum of γ2

should occur in the curve
7
8 − qx + sx2 = y (27)

that is, the maximum of γ2 must be the point such that dγ2

dx
= ∂γ2

∂y

dy

dx
+ ∂γ2

∂x
dx
dx

= 0; that is

x1 =
7
2 s + q2 − 4 +

√(
7
2 s + q2 − 4

)2 − 14sq2

4sq
y1 = 7

8
− qx1 + sx2

1 .

Thus, the maximum of γ2 in the plane γ2 = γ3 is

γ2 = 1
2

{
7
8 − qx1 + sx2

1 +
√(

7
8 − qx1 + sx2

1

)2 − 4x2
1

}
(28)

where

x1 =
7
2 s + q2 − 4 +

√(
7
2 s + q2 − 4

)2 − 14sq2

4sq
. (29)

Let

w = w(q, s) = 7
8 − qx1 + sx2

1 v = v(q, s) = x1 (30)
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�

�

v

w

7
8

119
127

28
127

ws= 127
128

ws=1−2q2

0

Figure 5. The (v, w) region.

then ws=1−2q2 = 9
16

√
49 + 32v2 − 49

16 when s = 1 − 2q2;

vs= 127
128

=
q2 − 135

256 +
√

q4 − 1913
128 q2 +

(
135
256

)2

127
32 q

and

ws= 127
128

= 7

8
−

q2 − 135
256 +

√
q4 − 1913

128 q2 +
(

135
256

)2

127
32

+
8
[
q2 − 135

256 +
√

q4 − 1913
128 q2 +

(
135
256

)2]2

127q2

when s = 127
128 . The (v,w) region corresponding to the (q, s) region in figure 4 is depicted in

figure 5. Because γ2 is a decreasing function of v while w is definite, the maximum of γ2 must
be in the left boundary curve ws= 127

128
in the v–w plane corresponding to the boundary s = 127

128

in the q–s plane. By dγ2

dq
< 0, the maximum of γ2 should be at the point

q = − 1

16
s = 127

128
. (31)

The exact maximum of γ2 is

γ2 ≡ γ (|h00110011〉) = γ (|h11000011〉) = 112

127
(32)

γ1 ≡ γ (|h01000000〉) = 7

127
. (33)

So we do find an exact solution of achievable efficiencies γ1, γ2, γ3 satisfying γ2 = γ3,
and prove that the maximum γ2 + γ3 must be greater than or equal to 224

127 .

3. Exact achievable efficiencies for probabilistically cloning the states of [15]

In this section, we will give the exact achievable efficiencies for probabilistically cloning the
states in the second example of [15].
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In [15], the probabilistic cloning quantum states are

|h1〉 = |h0010〉 ≡ 1
2 [|00〉 + |01〉 − |10〉 + |11〉] (34)

|h2〉 = |h0101〉 ≡ 1
2 [|00〉 − |01〉 + |10〉 − |11〉] (35)

|h3〉 = |h1001〉 ≡ 1
2 [−|00〉 + |01〉 + |10〉 − |11〉]. (36)

We can build probabilistic cloning machines with different cloning efficiencies for each of
the states (34)–(36). Let γ1 ≡ γ (|h0010〉), γ2 ≡ γ (|h0101〉), γ3 ≡ γ (|h1001〉) be the achievable
efficiencies, and |P (1)〉, |P (2)〉, |P (3)〉 be normalized states of the flag P. Pij denotes the inner
product between |Pi〉 and |Pj 〉, i, j = 1, 2, 3. Clearly, |Pij | � 1. Suppose

X(1) =

〈h1|h1〉 〈h1|h2〉 〈h1|h3〉

〈h2|h1〉 〈h2|h2〉 〈h2|h3〉
〈h3|h1〉 〈h3|h2〉 〈h3|h3〉




X
(2)
P =


〈h1|h1〉2P11 〈h1|h2〉2P12 〈h1|h3〉2P13

〈h2|h1〉2P21 〈h2|h2〉2P22 〈h2|h3〉2P23

〈h3|h1〉2P31 〈h3|h2〉2P32 〈h3|h3〉2P33




√
� =




√
γ1 0 0
0

√
γ2 0

0 0
√

γ3




then

X(1) −
√

�X
(2)
P

√
�+ =




1 − γ1 − 1
2 −

√
γ1γ2

4 P12 − 1
2 −

√
γ1γ3

4 P13

− 1
2 −

√
γ1γ2

4 P ∗
12 1 − γ2 0

− 1
2 −

√
γ1γ3

4 P ∗
13 0 1 − γ3


 .

Theorem 2 of [13] provides us with inequalities

1 − γ1 � 0 (37)

(1 − γ1)(1 − γ2) − ∣∣ 1
2 + 1

4

√
γ1γ2P12

∣∣2 � 0 (38)

(1 − γ1)(1 − γ2)(1 − γ3) − (1 − γ3)
∣∣ 1

2 + 1
4

√
γ1γ2P12

∣∣2 − (1 − γ2)
∣∣ 1

2 + 1
4

√
γ1γ3P13

∣∣2 � 0

(39)

which allow us to derive achievable efficiencies for the probabilistic cloning process.
According to the rule specified in [15] the overall probability (score) of success with the
help of probabilistic cloning is given by

p2 = psuccess + (1 − psuccess)

[
p0010 + (1 − p0010)

1

16

]

= γ1 + γ2 + γ3

3
+

(
1 − γ1 + γ2 + γ3

3

) [
1 − γ1

3 − γ1 − γ2 − γ3
+

(
1 − 1 − γ1

3 − γ1 − γ2 − γ3

)
1

16

]
= [6 + 5(γ2 + γ3)]/16. (40)

From the above equation we know that we should find the maximum of γ2 + γ3 satisfying
equations (37)–(39).
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Our immediate goal is to prove that the maximum of γ2 + γ3 must be greater than or
equal to 8/7. For this purpose we discuss the problem in the plane γ2 = γ3. In this plane
equation (39) becomes

(1 − γ1)(1 − γ2) − ∣∣ 1
2 + 1

4

√
γ1γ2P12

∣∣2 − ∣∣ 1
2 + 1

4

√
γ1γ2P13

∣∣2 � 0. (41)

Let

P12 = a + bi P13 = c + di q = 1
4 (a + c)

s = 1 − 1
16 (a2 + b2 + c2 + d2) x = √

γ1γ2 y = γ1 + γ2.
(42)

Then equation (41) can be rewritten concisely as
1
2 − qx + sx2 � y. (43)

Obviously
1
2 − qx + sx2 � y � 2x � 0. (44)

Here y = 1
2 − qx + sx2 and y = 2x have one intersection point

x0 = 2 + q −
√

(2 + q)2 − 2s

2s
y0 = 2x0. (45)

The proof is as follows. The intersection points of y = 1
2 − qx + sx2 = 1

2 − 1
4 (c + a)x +[

1 − 1
16 (a2 + b2 + c2 + d2)

]
x2 and y = 2x are

x0 = 2 + q ±
√

(2 + q)2 − 2s

2s
y0 = 2x0.

From |P12| � 1 and |P13| � 1 it is seen |a + c| � 2 and 0 � a2 + b2 + c2 + d2 � 2, which
imply that

− 1
2 � q � 1

2
7
8 � s � 1 (46)

thus

x0 = 2 + q +
√

(2 + q)2 − 2s

2s
> 1

which contradicts x = √
γ1γ2 � 1. Therefore y = 1

2 − qx + sx2 and y = 2x have one
intersection point

x0 = 2 + q −
√

(2 + q)2 − 2s

2s
y = 2x0.

The region in the x–y plane governed by equation (44) is shown in figure 6, where x must
satisfy

0 � x � 2 + q −
√

(2 + q)2 − 2s

2s
= x0. (47)

Immediately

∂x0

∂q
= 1

2s

[
1 − 2 + q√

(2 + q)2 − 2s

]
� 0.

It follows that when s is definite x0 is a decreasing function of q. If q is definite (i.e. a + c = k

is definite), then the maximum s is to make a2 + b2 + c2 + d2 = (a + c)2 + b2 + d2 − 2ac

minimum, which implies b = d = 0 and ac = (a+c)2

4 . Therefore the curve of maximum s is
s = 1 − 1

2q2 when q is definite. While s minimum is to make a2 + b2 + c2 + d2 maximum,
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0
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Figure 6. The (x, y) region. Note 1
2 − q + s � 2.

�

�1

7
8

− 1
2

1
2

q

s

0

smax = 1 − 1
2q2

Figure 7. The (q, s) region.

so minimum s is s = 7
8 in the case q is definite. The boundary of s and q is illustrated in

figure 7.
By x = √

γ1γ2 and y = γ1 + γ2 we get

γ1 = 1
2

(
y −

√
y2 − 4x2

)
γ2 = 1

2

(
y +

√
y2 − 4x2

)
. (48)

It follows that if y is definite, the smaller x is, the bigger γ2 is, so the maximum of γ2 should
take place in the curve

1
2 − qx + sx2 = y (49)

that is, the maximum of γ2 must be the point such that dγ2

dx
= ∂γ2

∂y

dy

dx
+ ∂γ2

∂x
dx
dx

= 0, that is

x1 = 2s + q2 − 4 +
√

(2s + q2 − 4)2 − 8sq2

4sq
y1 = 1

2
− qx1 + sx2

1 .

Thus, the maximum of γ2 in the plane γ2 = γ3 is

γ2 = 1
2

{
1
2 − qx1 + sx2

1 +
√(

1
2 − qx1 + sx2

1

)2 − 4x2
1

}
(50)

where

x1 = 2s + q2 − 4 +
√

(2s + q2 − 4)2 − 8sq2

4sq
. (51)

Next we derive the maximum of γ2. Let

w = w(q, s) = 1
2 − qx1 + sx2

1 v = v(q, s) = x1. (52)
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Figure 8. The (v, w) region.

Now we change the (q, s) region to the (v,w) region. When s = 1 − 1
2q2, then v = − q

2−q2

and w = 1
2 + 3q2

2(2−q2)
. From v = − q

2−q2 , |q| � 1
2 and v = x1 � 0 we know that q = 1−

√
1+8v2

2v
,

0 � v � 2
7 . Hence w

s=1− q2

2
= − 1

4 + 3
4

√
1 + 8v2 and 0 � v

s=1− q2

2
� 2

7 in the case s = 1− 1
2q2.

Note that

vs= 7
8

=
− 9

4 + q2 +
√(

q2 − 9
4

)2 − 7q2

7
2q

and

ws= 7
8

= 1

2
−

− 9
4 + q2 +

√(
q2 − 9

4

)2 − 7q2

7
2

+
7

8


− 9

4 + q2 +
√(

q2 − 9
4

)2 − 7q2

7
2q




2

if s = 7
8 . The (v,w) region corresponding to the (q, s) region is shown in figure 8.

Since γ2 is a decreasing function of v as w is definite, from equation (50) we obtain that the
maximum of γ2 must appear in the left boundary curve ws= 7

8
in the v–w plane corresponding

to the boundary s = 7
8 in the q–s plane. It can be seen that

dγ2

dq
< 0 (53)

while s = 7
8 . Therefore the maximum of γ2 should exist at the point

q = − 1
2 s = 7

8 . (54)

The exact maximum of γ2 is

γ2 = 4
7 	 0.571 43 (55)

and

γ1 = 1
7 	 0.142 86. (56)

It is clear that our analytic solution is better as compared with the numerical result

γ1 = 0.141 65 γ2 = γ3 = 0.571 22 (57)
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of [15], since equations (55) and (56) are exact solutions. Evidently the maximum of γ2 + γ3

should be greater than or equal to 8
7 although we guess that 8

7 should be the maximum of
γ2 + γ3.

However if we make γ1 +γ2 to be maximum, under the condition γ2 = γ3, it is not difficult
to obtain that the probability of cloning success is, on average,

Psuccess = γ1 = γ2 = γ3 = 1 − 2
√

2 + 1

7
	 0.453 08. (58)

We have constructed the quantum logic network for probabilistically cloning the states
[15] in [16].

In summary, we give achievable efficiencies for probabilistically cloning the quantum
states used in implemented tasks for which cloning provides some enhancement in
performance, and present an example of quantum computational tasks whose performance
is enhanced if we distribute quantum information using quantum cloning. We hope our result
will be helpful in the quantum information processing.
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[3] Bužek V and Hillery M 1996 Phys. Rev. A 54 1844
[4] Gisin N and Massar S 1997 Phys. Rev. Lett. 79 2153
[5] Gisin N 1998 Phys. Lett. A 242 1
[6] Werner R F 1998 Phys. Rev. A 58 1827
[7] Keyl M and Werner R F 1999 J. Math. Phys. 40 3283
[8] Bruß D and Macchiavello C 1999 Phys. Lett. A 253 249
[9] Bruß D, Ekert A and Macchiavello C 1998 Phys. Rev. Lett. 81 2598
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